learn basic mathematics topics

Contents:

  • Ancient Roman numeral                                                         
  • Hindu-Arabic Numeral    
  • Prime Numbers 
  • successor and predecessor
  • Co-prime numbers 
  • Comparison of numbers
  • Natural numbers  
  • Odd-Even and Composite number
  • Whole numbers 
  • Forming of Greater and Smallest numbers
  • Integers 
  • Methods of reading and writing a large number
  • Factors   
  • Indian place value chart
  • Ascending order 
  • International methods of numbering
  • Descending order
  • BODMAS and ODMAS
  • Face value of a digit
  • Place value.

Ancient Roman Numeral:


 1 5 10 50 100 500 1000
 I V X L C D M



Hindu- Arabic Numeral

The Hindu-Arabic numeral system based on place value.


 1  2  3  4  5  6   7  8  9  10
 One Two Three Four Five Six Seven Eight Nine Ten
 1112  13 14 15 16 17 18 19 20
 Eleven Twelve Thirteen Fourteen Fifteen Sixteen SeventeenEighteen Nineteen Twenty
 21 22 23 24 25 26 27 28 29 30
 Twenty One Twenty-Two Twenty-Three Twenty Four Twenty Five Twenty Six Twenty Seven Twenty Eight Twenty Nine Thirty
 31 32 33 34 35 36 37 38 39 40
 Thirty One Thirty-Two Thirty-Three Thirty Four Thirty-Five THirty-Six Thirty-Seven Thirty-Eight Thirty-Nine Forty
 41 42 43 44 45 46 47 48 49 50
 Forty One Forty Two Forty Three Forty Four Forty Five Forty-Six Forty Seven Forty Eight Forty Nine Fifty
 51 52 53 54 55 56 57 58 59 60
 Fifty-One Fifty Two Fifty Three Fifty Four Fifty Five Fifty Six Fifty Seven Fifty Eight Fifty Nine Sixty
 61 62 63 64 65 66 67 68 69 70
 Sixty One Sixty Two Sixty Three Sixty Four Sixty Five Sixty Six Sixty Seven Sixty-Eight Sixty Nine Seventy
 71 72 73 74 75 76 77 78 79 80
 Seventy One Seventy Two Seventy Three Seventy Four Seventy Five Seventy Six Seventy Seven Seventy Eight Seventy Nine Eighty
 81 82 83 84 85 86 87 88 89 90
 Eighty One Eighty Two Eighty Three Eighty Four Eighty Five Eighty Six Eighty Seven Eighty Eight Eighty Nine Ninty
91 92 93 94 95 96 97 98 99 100
 Ninty One Ninty Two Ninty Three Ninty Four Ninty Five Ninty Six Ninty Seven Ninty Eight Ninty Nine Hundred



Prime Numbers:


A number 2, 5, 13,19 ...etc is divisible only itself and 1. these numbers have only two factors 1 and itself they are called a prime number.

0 and 1 are not prime numbers. all prime number is odd, except 2. There are 25 prime numbers from 1 to 100.

The smallest even number is 2. And the smallest prime number is also 2. Thus, 2 is the smallest prime number. Which is also the smallest even number.


List of prime number:

 2 3 5 7 11
 13 17 19 23 29
 31 37 41 43 47
 53 59 61 67 71
 73 79 83 89 97


Coprime Numbers:


Two numbers are coprime numbers if the only common factor they have is 1.
Example -
18 = 1 x 2  x 3 x 3 and 

35 = 1 x 7 x 5

18 and 35 have no common factor other than 1 so they are coprime numbers.



Natural Numbers: The counting numbers1,2,3,4,5,6,7.....etc are called natural numbers.



Whole numbers; All natural numbers including 0 are called whole numbers.

Example - 0,1,2,3,4,5,6,7,....etc are all whole numbers.



Integers: All whole numbers along with negative natural numbers are known as integers.

Example -  etc ....-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7....etc



Fractions - numbers in the form of a/b  where a and b are whole numbers and b is not equal to 0 are called fractions.

Example - 
1/4,
4/5
6/9


Factor: The factor of a number divide the number without leaving a remainder.

12 x 8 = 96 12 and 8 are factor of 96


  1. A number is a factor of itself.
  2. 1 is the factor of every number.





Ascending order: Ascending order means arranging numbers from the smallest to the largest.

Example -  4035, 4217, 4315, 4479.



Descending order: Descending order means arranging numbers from the biggest to smallest.


Example - 9729, 9652, 9526, 9256.



Face value of a digitThe face value of a digit in a number is the value of the digit itself irrespective of its place in the number.

 Example:

In the number 345789.

Face value of 3 = 3

Face value of 4 = 4

Face value of 5 = 5

Face value of 7 = 7

Face value of 8 = 8

Face value of 9 = 9



Place value:

  • The place value of a digit depends on its position in the number.
  • place value of a digit = face value of the digit X value of the place


Example - Find the place value of 2,37,456

                     L     TTh      Th         H       T        O
                     2      3           7           4       5          6

2,37,456 = 2 lakhs 37 thounds 4 hundreds 5 tens 6 once

place value of 6 =  6 X 1 = 6

Place value of 5 =  5 X 10 = 5 tens

Place value of  4 = 4 X 100 = 400 = 4 hundred

Place value of  7 = 7 X 1000 = 7000 = 7 thousands

Place value of  3 = 3 X 10000 = 30,000 = 30 thousands

Place value of  2 = 2 X 100000 = 2,00,000 = 2 lakhs



Successor and predecessor of a number:


SuccessorThe successor of a number is one more than the number. we find a successor to add 1 to the number.

Example -

The successor of 543786 is 543787  ( 543786 + 1 = 543787 )

The successor of 999999 is 1000000 ( 999999 +   = 1000000).


Predecessor - The predecessor of a number is less than the number. so subtract 1 from the number to get predecessor.

Example -

A predecessor of 56903 is 56902  ( 56903 - 1 = 56902 )

A predecessor of 999999 is 999998  ( 999999 - 1 = 999998).



Comparison of numbers:


Rule 1 - The number with more number of a digit is always greater.

Example -

     7999  <  36541

    10001  > 9999

         99   < 100


Rule 2 - The number with a greater number of hundreds is greater.

Example -

678   <  734.

297    >  199


Rule 3 - If the digits at hundreds and tens place are the same the number with a greater number at once place is greater.

Example -

560 < 569.

426 > 420.

Rule 4 - If the digits at hundreds, tens, and once place are the same, the numbers are equal.

Example -

        567  = 567

2347658  = 2347658.


Note - To compare numbers, move to the left to right comparing the digits at each place. if the digit is the same in place compare the digit at the next pace.

1. If 100s place is the same, compare 10s place.

2. 7 > 6, it is called 7 is greater > than 6.

3. 7 < 8, it is called 7 is less  < than 8.



Odd, Even and Composite Numbers


Even numbers- Numbers that make an exact number of pairs are called even numbers. or any number that can be exactly divided by 2 is known as even numbers.


Even numbers:

 2 4 6 8 10 12 14 16 18 20
 22 24 26 2830  32 34 36 38 40
 42 44 46 48 50 52 54 56 58 60
 62 64 66 68 70 72 74 76 78 80
 82 84 86 88 90 92 94 96 98 100
          



Note - All numbers end with 2, 4, 6, 8, and 0 are even numbers.


Odd numbers - The numbers that do not make an exact number of pairs are known odd numbers.


 1 3 5 7 9 11 13 15 17 19
 21 23 25 27 29 31 33 35 37 39
 41 43 45 47 49 51 53 55 57 59
 61 63 65 67 69 71 73 75 77 79
 81 83 85 87 89 91 93 95 97 99


Note - All numbers with end 1, 3,5,7, and 9 are odd numbers.


Composite numbers:


The number that has more than 2 factors. a composite number has a minimum of 3 factors. A whole number that can be divided by numbers other than 1 or itself.

Example - 

15 can be divided exactly by 3, 5,1, and itself so 15 is a composite number.

17 can not be divide other than 1 and itself so 17 is not a composite number, 17 is an odd number.


 4 6 8 9 10 12 14 15 16 18
 20 21 22 24 25 26 27 28 30 32
 33 34 35 36 38 39 40 42 44 45
 46 48 49 50 51 52 54 55 56 57
 58 60 62 63 64 65 66 68 69 70
 72 74 75 76 77 78 80 81 82 84
 85 86 87 88 90 91 92 93 94 95
 96 98 99 100      


Note - there are 74 composite numbers between 1 to 100.

Forming the greatest and smallest digits numbers:


We know that there is no 2 digit number beyond 99. 99 is the largest number of 2 digits. Thus, 999 is the largest number of 3 digits. And the largest number of 4 digits is 9999. If 1 is added to 9999, the smallest number of 5 digits is obtained.

  1. The largest number of one digit + 1 = the smallest number of two digits.
  2. The largest number of two digits + 1 = the smallest number of three digits.
  3. The largest number of three digits + 1 = the smallest number of four digits.


Example:
9 + 1 = 10
99 +1 = 100
999 +1 = 1000. 

Similarly, reducing one to the smallest 2-digit number gives the largest number of 1 digit. Subtracting 1 from the smallest three-digit number gives the largest 2-digit number. Reducing 1 to a 4 digit number gives the largest 3 digit number.

Example:

10 - 1 = 9
100 - 1 = 99
1000 - = 999                

Greatest numbers      

One digit -  9 

Two-digit -  99   


Three-digit-  999 


Four-digit -   9,999    

Five-digit -   99,999   


Six-digit -     9,99,999 


Seven digits -99,99,999 


Eight digits - 9,99,99,999   


Nine digits -  99,99,99,999 


Ten digits-     9,99,99,99,999   


Smallest numbers  


One digit -     1     
                   
Two-digits -   10 

Three-digits - 100      


Four-digits -    1,000 


Five-digits -     10,000


Six digits -       10,0000


Seven digits -   10,00,000 


Eight digits -    100,00,000


Nine digits -     10,00,00,000


Ten digits -       1,00,00,00,000 




Method of reading and writing large numbers


  1. 347
  2. 2456



H  T    O                   Expanded

3       4        7                          3 X 100 + 4 x 10+ 7 x1


Three hundred and forty-seven
Similarly 2456

Th     H      T        O              Expanded

 2       4       5        6                    2 x 1000 + 4 x 100 + 5 x 10 + 6 x 1


2,456 = Two thousand four hundred and fifty-six


Number                         Name


1                                     One


10                                  Ten


100                                Hundred


1000                              Thousand


10,000                           Ten thousand


1,00,000                        Lakh or hundred thousand


10,00,000                      Ten lakh or million


1,00,00,000                   Crore or ten million


10,00,00,000                 Ten crore or hundred million


100,00,00,000               Hundred crore or billion








                                                              Indian place value chart


Commas help us a lot in writing and reading large numbers. The Indian System of Numeration uses commas to display thousands, millions, and crores. First commas in place of a hundred (moving from right to third). The second comma is followed by the next 2 digits. The third comma is followed by the leading two digits.


                
253567240 =  200000000 + 50000000 + 3000000 +  500000  + 
                        20 crore                    5 crores                  30 lakh                 5 lakh

 60000      +   7000   +     200  +   40  + 0 
 60 thousand             7 thousand          2 hundred    forty



25,35,67,240 = twenty-five crore thirty-five lakh sixty-seven thousand two hundred and forty


The international system of numeration


In the international method of numbering, unit, tens, hundreds, thousands, and used in millions.
The first comma is followed by the third digit from the right. The second comma displays the millions.

Example: 40, 612, 505

It is read as Forty million six hundred twelve thousand five hundred and five in the international method of numbering.


In the Indian method, it is four crore six lakh twelve thousand five hundred and five.



One's period           Thousands period              Millions period            Billions period


Ones                      Thousand                          Million                        Billion


Tens                       Ten thousands                     Ten million                 Ten billion



Hundreds              Hundred thousand            Hundred million        Hundred billion




165,124,640 = one hundred and sixty-five million one hundred and twenty-four thousand six hundred and forty




BODMAS and ODMAS



Simplifications:

Opening and removing brackets


(  ) it is called first brackets, Parentheses, or round brackets


❴  ❵ It is second brackets, braces, or curly brackets


[  ] Square brackets  


< > Angle brackets  

Example :

(6 + 7) x 10
= 13 X 10
= 130

The use of parentheses clearly states that the numbers within parentheses () are first converted into a single number and then carried out.   



When there brackets in a simplification sum, the order to be done by BODMAS. If brackets within the brackets, simplify within brackets first.

B - Brackets

O - Of


D - Division


M - Multiplication


A - Addition


S -  Subtraction



Example :

= 3 - { ( 36 + 24) /  ( 90 - 60)}

= 3 - { 60 / 30 }

= 3 - 2

= 1



ODMAS is helpful for the simplification of addition, subtraction, multiplication,  and division.

O - Of

D - Division

M - Multiplication

A - Addition

S - Subtraction.




Simplify-

= 8720 - 15 of  50 ÷ 25 × 130 - 3250 + 912
= 8720 - 750 ÷25 x 130 - 3250 + 912
= 8720 - 30 x 130 - 3250 + 912
= 8720 + 912  - 3900 - 3250
= 9632 - 7150
= 2482




एक टिप्पणी भेजें

0 टिप्पणियाँ